
Computing for Data Sciences
Mid-Sem : Hints, Answers and Pointers

Problem A [30]

1. Define norm on the n-dimensional vector space Rn. Given a norm ρ(·) on Rn, define a related
notion of distance between any two vectors in Rn, and state its properties. [2 + 3]

Answer: A norm on the n-dimensional vector space Rn is a function ρ : Rn → R
that satisfies the following properties.

(a) ρ(x) ≥ 0 for all x ∈ Rn, with ρ(x) = 0 if and only if x = 0.
(b) ρ(a · x) = |a| · ρ(x) for all x ∈ Rn and all a ∈ R.
(c) ρ(x + y) ≤ ρ(x) + ρ(y) for all x,y ∈ Rn.

Answer: A distance defined in relation to ρ on Rn is a function δ : Rn × Rn → R
such that δ(x,y) = ρ(x− y). The distance δ satisfies the following properties.

(a) δ(x,y) ≥ 0 for all x,y ∈ Rn, with δ(x,y) = 0 if and only if x = y.
(b) δ(x,y) = δ(y,x) for all x,y ∈ Rn.
(c) δ(x,y) ≤ δ(x, z) + δ(z,y) for all x,y, z ∈ Rn.

Ref: Lecture 1, 2

2. Let the `p norm of a vector x = [x1, x2, . . . , xn]
T in Rn be defined as ||x||p = (

∑n
i=1 |xi|p)

1/p.
Comment on the significance of the `1 and `2 norms of x in Rn, in terms of the geometrical
depiction of the unit vectors in Rn. Is there any relation between the `1 and `2 norms of x
and the statistical properties of the set of real numbers {x1, x2, . . . , xn}? [5 + 5]

Pointer: For the geometrical significance, note that just the depiction of unit
vectors is required. Thus, one may discuss the geometrical appearance of the unit
sphere in each of these norms, and that should be enough.

Ref: Lecture 2

Answer: The `1 norm ||x||1 =
∑n

i=1 |xi| is identical to the Mean Deviation (scaled
by n) of the set of real numbers {x1, x2, . . . , xn}, in case the mean of these numbers
is zero, that is, in case these numbers are centered. Similarly, the `2 norm ||x||2 =

(
∑n

i=1 |xi|2)
1/2 is identical to the Standard Deviation (scaled by n) of the set of real

numbers {x1, x2, . . . , xn}, in case the numbers are centered.

Ref: Lecture 8
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3. Let an inner product on Rn be defined as the dot product of two vectors: x · y =
∑n

i=1 xiyi,
where x = [x1, x2, . . . , xn]

T and y = [y1, y2, . . . , yn]
T . What is the geometrical significance

of this inner product in Rn? Is there any statistical significance of this inner product in
connection with the sets of real numbers {x1, x2, . . . , xn} and {y1, y2, . . . , yn}? [2 + 3]

Pointer: For the geometric significance, one may discuss the dot product in terms
of the projection of the vector x on y, or the other way round. In addition, one
may write the geometric form of the dot product x · y as ||x||2||y||2 cos θ, where θ
denotes the angle between the vectors x and y.

Ref: Lecture 3

Answer: The dot product of two vectors x · y =
∑n

i=1 xiyi is identical to the
Covariance (scaled by n) between the sets of real numbers {x1, x2, . . . , xn} and
{y1, y2, . . . , yn}, in case both the sets are centered, i.e., the mean of each set is zero.

Ref: Lecture 8

4. Suppose that you have an n×p matrix X representing a dataset, comprising of n independent
observations along p features. Assume that the dataset is centered, that is, the mean of values
along each column in X is zero. Comment on the statistical significance of the matrix XTX
in terms of the features and observations in the dataset. [5]

Pointer: Note that X may be considered as a set of columns Fi, for i = 1, 2, . . . , p,
representing the p features in the dataset, with each feature properly centered.
Thus in the matrix XTX, the diagonal terms XTX[i, i] = Fi · Fi = ||Fi||22 denote
the Variance (scaled) of the individual features Fi, and the other terms XTX[i, j] =
Fi · Fj denote the Covariance (scaled) between features Fi and Fj, where i, j =
1, 2, . . . , p. This is why the matrix 1

n
XTX is called the covariance matrix of X.

Ref: Lecture 8

5. What can you say about the dataset if the matrix XTX is diagonal? What can you say if the
matrix XTX is block-diagonal, with k distinct blocks along the main diagonal? [2 + 3]

Pointer: If the matrix XTX is diagonal, then covariance Fi ·Fj between features Fi

and Fj is zero for all i, j = 1, 2, . . . , p. This means that the features are uncorrelated.

Ref: Lecture 8

Pointer: If the matrix XTX is block-diagonal, then the covariance Fi ·Fj between
features Fi and Fj is zero between blocks, but non-zero within blocks. In other
words, the features across any two blocks are uncorrelated, but the features within
a specific block are correlated. Such a structure of XTX, with k distinct blocks
along the main diagonal, automatically denotes the presence of k clusters within the
features, and a strong tendency of correlation within each block (cluster) indicates
that there may exist a good k-dimensional approximation of the original dataset X.

Ref: Lecture 8, 9
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Problem B [30]

1. Describe the role of an m×n matrix X as a linear operator from Rn to Rm. Your description
should include the conceptual notions of the fundamental subspaces – RowSpace, ColSpace
and NullSpace of X, as well as Rank of X. [7]

Pointer: This is straight from the Lectures 3 and 4. One may provide a concise
summary of the action of a matrix X as a linear operator X : Rn → Rm, and discuss
the notions of each of the fundamental subspaces. Additionally, one may extend the
discussion to the Singular Value Decomposition of X, and provide the basis for each
subspace as discussed above. No proof is required, but a figure would be great.

Ref: Lecture 3, 4

2. Given the fundamental subspaces of an m×n matrix X, how do you determine the following?
(a) Whether the matrix is a 1-to-1 linear map from Rn to Rm;
(b) Whether the matrix is an onto linear map from Rn to Rm;
(c) Whether the matrix is an invertible linear map from Rn to Rm. [3]

Pointer: The matrix X is a 1-to-1 linear map from Rn to Rm if and only if m ≥ n
and NullSpace of X is zero-dimensional; more precisely, a singleton set {0} in Rn.
The matrix X is an onto linear map from Rn to Rm if and only if m ≤ n and
NullSpace of XT is zero-dimensional; more precisely, a singleton set {0} in Rm. The
matrix X is an invertible linear map from Rn to Rm if and only if m = n and
both NullSpace of X and NullSpace of XT are zero-dimensional. One may of course
answer the same questions using the RowSpace, ColSpace or Rank of X.

Ref: Lecture 3, 4

3. Suppose that the full Singular Value Decomposition of an m× n matrix X results in:

X =


u1 · · · ur · · · um





σ1
. . . 0

σr

0 0




v1 · · · vr · · · vn



T

Represent this decomposition as X = UΣVT , and comment on the dimension of each matrix in
this representation. Discuss the connection of these matrices with the fundamental subspaces
of X. How can you determine the Rank of X given this SVD representation? [3 + 5 + 2]

Answer: Dimension of U ism×m, as there are exactlym vectors ui, each belonging
to the range Rm. Dimension of V is n × n, as there are exactly n vectors vi, each
belonging to the domain Rn. Thus, the dimension of the central matrix Σ must be
m× n, where the top-left r × r square block of Σ is a diagonal matrix with entries
{σ1, . . . , σr}, and the remaining entries of Σ are all zero.
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Pointer: The matrix Σ with its top-left r×r diagonal block indicates that the Rank
of X is r. The set of first r vectors {u1, . . . ,ur} in U constitute an orthonormal basis
for the ColSpace of X. The remaining (m−r) vectors {ur+1, . . . ,um} in U constitute
an orthonormal basis for the NullSpace of XT . The set of first r vectors {v1, . . . ,vr}
in V constitute an orthonormal basis for the RowSpace of X. The remaining (n−r)
vectors {vr+1, . . . ,vn} in V constitute an orthonormal basis for the NullSpace of X.
Thus the full SVD of a matrix X completely defines its fundamental subspaces.

Pointer: Given this SVD representation of X, the Rank of X is exactly equal to
the number of non-zero entries in Σ, that is, r. This is in fact the dimension of the
RowSpace as well as the ColSpace of X, as defined by U and V in the SVD.

Ref: Lecture 4, 5

4. As per the above representation of the SVD of X, determine the dimension and rank of each
of the matrices Zi = σiuiv

T
i , where 1 ≤ i ≤ r. Is there a way to reconstruct the original

matrix X given the matrices Zi for 1 ≤ i ≤ r? [3 + 2]

Pointer: Note that uiv
T
i is the outer product of the m× 1 vector ui with the n× 1

vector vi, and σi is just a real number (scalar). Thus, the dimension of Zi = σiuiv
T
i

is m × n, same as that of X, for each 1 ≤ i ≤ r. The rank of each Zi is 1, as the
SVD of Zi will return the decomposition Zi = [ui]m×1[σi]1×1[vi]

T
1×n, with a single

non-zero element σi in the matrix Σ.

Pointer: The SVD representation of X directly provides a relation between X and
the matrices Zi, as follows: X =

∑r
i=1 σiuiv

T
i =

∑r
i=1 Zi. This is the required way

to reconstruct X, as we know all Zi for 1 ≤ i ≤ r. Note that X is a rank r matrix,
as obtained from its SVD above, and each Zi is a rank 1 matrix, as proved above.
Thus, it is quite interesting to note that the proposed reconstruction in effect takes
the sum of r rank 1 matrices Zi to reconstruct a single rank k matrix X.

Ref: Lecture 9, 10

5. Is there a way to reconstruct the original matrix X given the matrices Zi for 1 ≤ i ≤ k, where
k is strictly less than r? If so, provide such a construction. If not, provide an approximate
reconstruction of X using the available matrices Zi for 1 ≤ i ≤ k, and comment on the quality
of such an approximation. [2 + 3]

Answer: Note that X is a rank r matrix and each Zi is a rank 1 matrix. Thus, if
we are provided with k number of rank 1 matrices Zi, for 1 ≤ i ≤ k, where k < r ,
it is not possible to completely reconstruct the rank r matrix X.

Pointer: One may construct a rank k matrix Xk =
∑k

i=1 Zi =
∑k

i=1 σiuiv
T
i ,

and consider Xk as an approximation of X. Now one may judge the quality of this
approximation quantitatively using a proper notion of distance between the matrices
Xk and X. The notion of such a distance may be formulated from the Frobenius
norm of matrices: ||X||F =

∑m
i=1

∑n
j=1 X[i, j]2, and one would find that Xk is the

best rank k approximation of the rank r matrix X in terms of the Frobenius norm.

Ref: Lecture 9, 10

4



Problem C [15]

Represent a book in the form of an m × n matrix B, where m is the total number of sentences in
the book and n is the total number of distinct words in the book, such that the entry B[i, j] in this
matrix represents the frequency of occurrence of the j-th word Wj in the i-th sentence Si.

Importance of the words and sentences are denoted by scores. The score ui of Si is equal to the sum
of scores of the words in it, weighted by the frequencies of occurrence. The score vj of Wj is equal
to the sum of scores of the sentences it is contained in, weighted by the frequencies of occurrence.

ui =
n∑

j=1

B[i, j] · vj for i = 1, 2, . . . ,m vj =
m∑
i=1

B[i, j] · ui for j = 1, 2, . . . , n

Devise an efficient strategy to identify 10 keywords (i.e., the most important words) from the book.

Hint: Summations are simply a specific way to represent matrix-vector multiplications.
Look past the individual sums mentioned in the problem to observe the broad picture. If
you construct the vectors u = [u1, u2, . . . , um]

T and v = [v1, v2, . . . , vn]
T , then the above

problem translates to the following set of matrix equations: u = Bv and v = BTu.
These two equations denote a cyclic mutual dependence between u and v, and if we put
one equation into another, we obtain u = (BBT )u and v = (BTB)v. Looks familiar?

Problem D [15]

Suppose that you have a dataset where m individuals have reviewed a collection of n movies, and
have provided scores (between 0 to 9, say) for each one. Suppose that I have also watched and
reviewed some (not all) of these n movies, and you know my scores. Devise a strategy to suggest
movies for me, from within the same set of the n movies, which I have not watched, but I may like.

Hint: To identify which movies I might like to watch, the goal is to identify the cluster
of individuals to whom I am ‘closest’ regarding the taste for movies. Suppose that you
know that I have watched p movies out of the n, and you have my rating vector, which
is of dimension 1 × p. You can take only these specific p columns from the complete
rating matrix of dimension m× n obtained from the reviewers, and try to find a cluster
of reviewers who are ‘closest’ to me. Once you find such a cluster of reviewers, you may
simply suggest me the movies from the (n− p) ones that I have not watched, following
the order (highest to lowest) in which this specific cluster of reviewers have rated them.

In addition, one may partition the n movies in the collection into k genres, which are
more or less uncorrelated – Action, Drama, Comedy, Romance, Noir, etc. One may now
treat these genres as features in the dataset (instead of the movies). It may be observed
that an individual likes movies of the same type(s) in general, that is, the preferences
are generally based on genres. Thus, it is likely that you can reduce the huge dimension
n (of movies in the collection) to a somewhat manageable p (the number of genres).
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