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be treated independently. Our analysis bears a strong resemblance to that of efficient exploration/ exploitation
schemes in the reinforcement learning literature. We describe an extensive experimental evaluation of our
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Censored Exploration and the Dark Pool Problem

Kuzman Ganchev, Michael Kearns, Yuriy Nevmyvaka, Jennifer Wortman Vaughan
Computer and Information Science, University of Pennsylvania

Abstract

We introduce and analyze a natural algo-
rithm for multi-venue exploration from cen-
sored data, which is motivated by the Dark
Pool Problem of modern quantitative finance.
We prove that our algorithm converges in
polynomial time to a near-optimal alloca-
tion policy; prior results for similar prob-
lems in stochastic inventory control guaran-
teed only asymptotic convergence and exam-
ined variants in which each venue could be
treated independently. Our analysis bears a
strong resemblance to that of efficient explo-
ration/exploitation schemes in the reinforce-
ment learning literature. We describe an ex-
tensive experimental evaluation of our algo-
rithm on the Dark Pool Problem using real
trading data.

1 Introduction

We analyze a framework and algorithm for the problem
of multi-venue exploration from censored data. Con-
sider a setting in which at each time period, we have
some volume of V units (possibly varying with time) of
an abstract good. Our goal is to “sell” or “consume”
as many of these units as possible at each step, and
there are K abstract “venues” in which this selling or
consumption may occur. We can divide our V units
in any way we like across the venues in service of this
goal. Our interest in this paper is in how to efficiently
learn a near-optimal allocation policy over time, under
stochastic assumptions on the venues.

This setting belongs to a broad class of problems
known in the operations research literature as perish-
able inventory problems (see Related Work below). In
the Dark Pool Problem (discussed extensively in Sec-
tion 5), at each time step a trader must buy or sell up

to V shares of a given stock on behalf of a client 1, and
does so by distributing or allocating them over multi-
ple distinct exchanges (venues) known as dark pools .
Dark pools are a recent type of stock exchange in which
relatively little information is provided about the cur-
rent outstanding orders (Wikipedia, 2009, Bogoslaw,
2007). The trader would like to execute as many of the
V shares as possible. If vi shares are allocated to dark
pool i, and all of them are executed, the trader learns
only that the liquidity available at exchange i was at
least vi, not the actual larger number that could have
executed there; this important aspect of our frame-
work is known as censoring in the statistics literature.

In this work we make the natural and common as-
sumption that the maximum amount of consumption
available in venue i at each time step (e.g., the to-
tal liquidity available in the example above) is drawn
according to a fixed but unknown distribution Pi. For-
mally speaking, this means that when vi units are sub-
mitted to venue i, a value si is drawn randomly from
Pi and the observed (and possibly censored) amount
of consumption is min{si, vi}.
A learning algorithm receives a sequence of volumes
V 1, V 2, . . . and must decide how to distribute the V t

units across the venues at each time step t. Our goal is
to efficiently (in time polynomial in the “complexity”
of the Pi and other parameters) learn a near-optimal
allocation policy. There is a distinct between-venue ex-
ploration component to this problem, since the “right”
number of shares to submit to venue i may depend on
both V t and the distributions for the other venues, and
the only mechanism by which we can discover the dis-
tributions is by submitting allocations. If we routinely
submit too-small volumes to a venue, we receive cen-
sored observations and are underutilizing the venue;
if we submit too-large volumes we receive uncensored
(or direct) observations but have excess inventory.

1In our setting it is important that we view V as given
exogenously by the client and not under the trader’s con-
trol, which distinguishes our setting somewhat from prior
works; see Related Work.



Our main theoretical contribution is a provably
polynomial-time algorithm for learning a near-optimal
policy for any unknown venue distributions Pi. This
algorithm takes a particularly natural and appealing
form, in which allocation and distribution reestimation
are repeatedly alternated. More precisely, at each time
step we maintain distributional estimates P̂i; pretend-
ing that these estimates are in fact exactly correct, we
allocate the current volume V accordingly. These allo-
cations generate observed consumptions in each venue,
which in turn are used to update or reestimate the P̂i.

We show that when the P̂i are “optimistic tail mod-
ifications” of the classical Kaplan-Meier maximum
likelihood estimator for censored data, this estimate-
allocate loop has provably efficient between-venue ex-
ploration behavior that yields the desired result.
Venues with smaller available volumes (relative to the
overall volume V t and the other venues) are gradu-
ally given smaller allocations in the estimate-allocate
loop, whereas venues with repeated censored observa-
tions are gradually given larger allocations, eventually
settling on a near-optimal overall allocation distribu-
tion. Interestingly, the analysis of our algorithm bears
strong resemblance to the exploration-exploitation ar-
guments common in the E3 and RMAX family of algo-
rithms for reinforcement learning (Kearns and Singh,
2002, Brafman and Tennenholtz, 2003).

1.1 Related Work

The problem perhaps closest to our setting is the
widely studied newsvendor problem from the opera-
tions research literature. In this problem, at each
time period a player (representing a newsstand owner)
chooses the quantity V of newspapers to purchase at
a fixed per-unit price, and tries to optimize profit in
the face of demand uncertainty at a single venue (their
newsstand). There is a large and diverse literature on
this single-venue problem; see Huh et al. (2009) and
the citations within. In this same paper, the authors
are the first to consider the use of the Kaplan-Meier
estimator in perishable inventory problems. They use
an estimate-allocate loop similar to ours, and show
asymptotic convergence to near-optimal behavior in
a single venue. Managing the distribution of an ex-
ogenously specified volume V across multiple venues
(which are the important aspects of the Dark Pool
Problem, where the volume to be traded is specified
by a client, and there are many dark pools), and the
attendant exploration-exploitation trade-off between
venues , are key aspects and differentiators of our al-
gorithm and analysis. We also obtain stronger (poly-
nomial time rather than asymptotic) bounds, which
requires a modification of the classical Kaplan-Meier
estimator.

Our main theoretical contribution is thus the devel-
opment and analysis of a multiple venue, polynomial
time, near-optimal allocation learning algorithm, while
our main experimental contribution is the application
of this algorithm to the Dark Pool Problem.

2 Preliminaries

We consider the following problem. At each time
t, a learner is presented with a quantity or volume
V t ∈ {1, · · · , V } of units, where V t is sampled from
an unknown distribution Q. The learner must decide
on an allocation �vt of these shares to a set of K known
venues, with vt

i ∈ {0, · · · , V t} for each i ∈ {1, · · · , K},
and

∑K
i=1 vt

i = V t. The learner is then told the
number of units rt

i consumed at each venue i. Here
rt
i = min{st

i, v
t
i}, where st

i is the maximum consump-
tion level of venue i at time t, which is sampled inde-
pendently from a fixed but unknown distribution Pi.
If rt

i = vt
i , we say that the algorithm receives a cen-

sored observation because it is possible to infer only
that rt

i ≤ st
i. If rt

i < vt
i , we say that the algorithm re-

ceives a direct observation because it must be the case
that rt

i = st
i.

The goal of the learner is to discover a near-optimal
one-step allocation policy, that is, an allocation pol-
icy that approximately optimizes the expected num-
ber of units out of V t consumed at each time step t.
(We briefly discuss other objectives at the end of Sec-
tion 4.4.)

Throughout the remainder of the paper, we use the
shorthand Ti for the tail probabilities associated with
Pi. That is, Ti(s) =

∑
s′≥s Pi(s′). Clearly Ti(0) = 1

for all i. We use T̂ t
i (s) for an empirical estimate of

Ti(s) at time t, and define P̂ t
i (s) = T̂ t

i (s) − T̂ t
i (s + 1)

to be the empirical estimate of Pi(s) at time t.

3 Greedy Allocation is Optimal

In this section, we show that given estimates T̂i of the
tail probabilities Ti for each venue i, a simple greedy
allocation algorithm can to maximize the (estimated)
expected number of units consumed at a single time
step. The greedy algorithm allocates one unit at a
time. The venue to which the next unit is allocated is
chosen to maximize the estimated probability that the
unit will be consumed; if vi units have already been
allocated to venue i, then the estimated probability
that the next allocated unit will be consumed is simply
T̂i(vi + 1). A formal description is given as Algorithm
1 below.

Theorem 1 The allocation returned by Greedy max-
imizes the expected number of units consumed in a sin-



Algorithm 1: Optimal allocation algorithm Greedy.

Input: Volume V , tail probability estimates {T̂i}Ki=1

Output: An allocation �v

�v ← �0;
for �← 1 to V do

i← argmaxi T̂i(vi + 1);
vi ← vi + 1 ;

end
return �v

gle time step, where the expectation is taken with re-
spect to the estimated tail probabilities {T̂i}Ki=1.

Proof: Using the fact that tail probabilities must sat-
isfy T̂i(s) ≥ T̂i(s′) for all s ≤ s′, it it is easy to verify
that by greedily adding units to the venues in decreas-
ing order of T̂i(s), Algorithm 1 returns

argmax
�v

K∑
i=1

vi∑
s=1

T̂i(s) s.t.

N∑
i=1

vi = V.

It remains to show that the expression above is equiv-
alent to the expected number of units consumed. We
do this algebraically. For an arbitrary venue i

Es∼P̂i
[min(s, vi)]

=
∞∑

s=1

P̂i(s)min(s, vi) =
vi−1∑
s=1

sP̂i(s) + viT̂i(vi)

=
vi−2∑
s=1

sP̂i(s) + (vi − 1)T̂i(vi − 1) + T̂i(vi)

= T̂i(1) + . . . + T̂i(vi − 1) + T̂i(vi) =
vi∑

s=1

T̂i(s).

The last two lines follow from the observation that
for any s, P̂i(s − 1) + T̂i(s) = T̂i(s − 1) and so (s −
1)P̂i(s − 1) + sT̂i(s) = (s − 1)T̂i(s − 1) + T̂i(s). Thus∑K

i=1

∑vi

s=1 T̂i(s) =
∑K

i=1 Es∼P̂i
[min(s, vi)], which is

the expected number of units consumed.

4 Censored Exploration Algorithm

In this section we present our main theoretical result,
which is a polynomial-time, near-optimal algorithm for
multi-venue exploration from censored data. We first
provide an overview of the algorithm and its analysis
before diving into the technical details. As mentioned
in the Introduction, the analysis bears strong resem-
blance to the “known and unknown state” exploration-
exploitation arguments common in the E3 and RMAX
algorithms for reinforcement learning (Kearns and
Singh, 2002, Brafman and Tennenholtz, 2003).

At the highest level, the algorithm is quite simple and
natural. The algorithm maintains estimates T̂ t

i for the
true unknown tail probabilities Ti for each venue i.
These estimates “improve” with time in a particular
quantifiable sense which drives the between-venue ex-
ploration discussed in the Introduction. At any given
time t, the current volume V t is allocated across the
venues by simply calling the optimal greedy allocation
scheme (Algorithm 1) on the current set of estimated
tail probabilities T̂ t

i . This results in new censored ob-
servations from each venue, which in turn are used to
update the estimates T̂ t+1

i used at the next time step.
Thus the algorithm, which is given as Algorithm 2,
implements a continuous allocate-reestimate loop.

Algorithm 2: Main algorithm.
Input: Volume sequence V 1, V 2, V 3, . . .
Arbitrarily initialize T̂ 1

i for each i;
for t← 1, 2, 3, . . . do

% Allocation Step:
�vt ← Greedy(V t, T̂ t

1 , . . . , T̂
t
K);

for i ∈ {1, . . . , K} do
Submit vt

i units to venue i;
Let rt

i be the number of shares sold;
% Reestimation Step:
T̂ t+1

i ← OptimisticKM ({(vτ
i , rτ

i )}tτ=1);
end

end

The only undetermined part of Algorithm 2 is the sub-
routine OptimisticKM , which specifies how we esti-
mate T̂ t

i from the observed data. The most natural
choice would be the maximum likelihood estimator on
the data. This estimator is well-known in the statis-
tics literature as the Kaplan-Meier estimator. In the
following section, we describe Kaplan-Meier and de-
rive a new convergence result that suits our particular
needs. This result in turn lets us define an “optimistic
tail modification” of Kaplan-Meier that becomes our
choice for OptimisticKM .

The analysis of Algorithm 2, which is developed in
detail over the next few sections, proceeds as follows:

Step 1: We first review the Kaplan-Meier maximum
likelihood estimator for censored data and provide a
new finite sample convergence bound for this estima-
tor. This bound allows us to define a “cut-off point” for
each venue i such that the Kaplan-Meier estimate of
the tail probability Ti(s) for every value of s up to the
cut-off point is guaranteed to be “close to” the true tail
probability. We then define a slightly modified version
of the Kaplan-Meier estimates in which the tail prob-
ability of the next unit above the cut-off is modified
in an optimistic manner. We show that in conjunction



with the greedy allocation algorithm, this minor mod-
ification leads to increased exploration, since the next
unit beyond the cut-off point always looks at least as
good as the cut-off point itself.

Step 2: We next prove our main Exploitation
Lemma (Lemma 4). This lemma shows that at any
time step, if it is the case that the number of units allo-
cated to each venue by the greedy algorithm is strictly
below the cut-off point for that venue — which can be
thought of as being in a known state in the parlance
of E3 and RMAX — then the allocation is provably
ε-optimal.

Step 3: We then prove our main Exploration Lemma
(Lemma 5), which shows that on any time step at
which the allocation made by the greedy algorithm is
not ε-optimal, it is possible to lower bound the prob-
ability that the algorithm explores. Thus, as with E3

and RMAX, anytime we are not in a known state and
thus cannot ensure optimal allocation, we are instead
assured of exploring.

Step 4: Finally, we show that on any sufficiently
long sequence of time steps (where “sufficiently long”
is polynomial in K, V , 1/ε, and ln(1/δ), where δ is a
standard confidence parameter), it must be the case
that either the algorithm achieves an ε-optimal solu-
tion on at least a 1 − ε fraction of the sequence, or
the algorithm has explored sufficiently often to learn
accurate estimates of the tail distributions out to V
units on every venue. In either case, we can show that
with probability 1− δ, at the end of the sequence, the
current algorithm achieves an ε-optimal solution with
probability at least 1− ε.

4.1 Convergence of Kaplan-Meier Estimators

We begin by describing the standard Kaplan-Meier
maximum likelihood estimator for censored data (Ka-
plan and Meier, 1958, Peterson, 1983), restricting our
attention to a single venue i. Let zi,s be the true prob-
ability that the demand in this venue is exactly s units
given that the demand is at least s units. Using the
fact that 1− zi,s is the conditional probability of there
being a demand of at least s given that the demand is
at least s − 1, it is easy to verify that for any s > 0,
Ti(s) =

∏s−1
s′=0 (1− zi,s′). At a high level, we can think

of Kaplan-Meier as first computing an estimate of zi,s

for each s and then using these estimates to compute
an estimate of Ti(s).

Let I be an indicator function taking on the value
1 if its input is true and 0 otherwise. Let Dt

i,s =∑t
τ=1 I[rτ

i = s, vτ
i > s] be the number of direct ob-

servations of s units up to time t, and let N t
i,s =

∑t
τ=1 I[rτ

i ≥ s, vτ
i > s] be the number of (direct or cen-

sored) observations of at least s units on time steps at
which more than s units were requested. The quantity
N t

i,s is then the number of times there was an oppor-
tunity for a direct observation of s units, whether or
not one occurred.

We can then naturally define ẑt
i,s = Dt

i,s/N
t
i,s, with

ẑt
i,s = 0 if N t

i,s = 0. This quantity is simply the empir-
ical probability of a direct observation of s units given
that a direct observation of s units was possible. The
Kaplan-Meier estimator of the tail probability for any
s > 0 after t time steps can then be expressed as

T̂ t
i (s) =

s−1∏
s′=0

(
1− ẑt

i,s′
)
, (1)

with T̂ t
i (0) = Ti(0) = 1 for all t.

Previous work has established convergence rates for
the Kaplan-Meier estimator to the true underlying
distribution in the case that the submission sequence
v1

i , . . . , vt
i is i.i.d. (see, for example, Foldes and Rejto

(1981)), and asymptotic convergence for non-i.i.d. set-
tings (Huh et al., 2009). We are not in the i.i.d. case,
since the submitted volumes at one venue are a func-
tion of the entire history of allocations and executions
across all venues. In the following theorem we give a
new finite sample convergence bound applicable to our
setting.

Theorem 2 Let T̂ t
i be the Kaplan-Meier estimate of

Ti as given in Equation 1. For any δ > 0, with proba-
bility at least 1− δ, for every s ∈ {1, · · · , V },∣∣∣T t

i (s)− T̂ t
i (s)

∣∣∣ ≤ s
√

2 ln(2V/δ)/N t
i,s−1.

The proof depends on the next lemma, proof omitted.

Lemma 1 For each i ∈ {1, · · · , �}, let xi and yi be
real numbers in [0, 1], with |xi − yi| ≤ εi for some
εi > 0. Then |∏�

i=1 xi −
∏�

i=1 yi| ≤
∑�

i=1 εi.

Proof of Theorem 2: We will show that ẑt
i,s con-

verges to zi,s, and that this implies that the Kaplan-
Meier tail probability estimator converges to Ti(s).

Consider a fixed value of s. Let tn be the index τ of
the nth time step at which rτ

i ≥ s and vτ
i > s. By def-

inition, there are N t
i,s such time steps total. For each

n ∈ {1, · · · , N t
i,s}, let Xn =

∑n
�=1

(
zi,s − I[rt�

i = s]
)
.

It is easy to see that the sequence X1, · · · , XNt
i,s

forms
a martingale; for each n, we have that |Xn−Xn+1| ≤ 1
and E [Xn+1|Xn] = Xn. By Azuma’s inequality (see,
for example,Alon and Spencer (2000)), for any γ,

Pr
(∣∣∣XNt

i,s

∣∣∣ ≥ γ
)
≤ 2e−γ2/(2Nt

i,s).



Noting that XNt
i,s

= N t
i,s(zi,s − ẑt

s) and setting γ =

εN t
i,s gives us that Pr

(∣∣zi,s − ẑt
i,s

∣∣ ≥ ε
) ≤ 2e−ε2Nt

i,s/2.
Setting this equal to δ/V and applying a union bound
gives us that with probability 1 − δ, for every s ∈
{0, · · · , V − 1}, ∣∣zi,s − ẑt

i,s

∣∣ ≤√
2 ln(2V/δ)/N t

i,s.

Assume this holds for all s. Then it follows from
Lemma 1 that for any particular s ∈ {1, · · · , V },

|Ti(s)− T̂ t
i (s)|≤

s−1∑
s′=0

√
2 ln(2V/δ)

N t
i,s′

≤s

√
2 ln(2V/δ)

N t
i,s−1

.

4.2 Modifying Kaplan-Meier

In Algorithm 3 we describe the minor modification
of Kaplan-Meier necessary for our analysis. As de-
scribed above (Step 1), the value ct

i in this algorithm
can intuitively be viewed as a “cut-off point” up to
which we are guaranteed to have sufficient data to ac-
curately estimate the tail probabilities using Kaplan-
Meier. (This is formalized in Lemma 2 below.) Thus
for every quantity s ≤ ct

i, we simply let T̂ t
i (s) be pre-

cisely the Kaplan-Meier estimate as in Equation 1.

However, to promote exploration, we set the value of
T̂ t

i (ct
i +1) optimistically to the Kaplan-Meier estimate

of the tail probability at ct
i (not at ct

i + 1). This op-
timistic modification is necessary to ensure that the
greedy algorithm explores (i.e., has a chance of making
progress towards increasing at least one cut-off value)
on every time step for which it is not already producing
an ε-optimal allocation. In particular, suppose that
the current greedy solution allocated no more than ct

i

units to any venue i and exactly ct
j units to some venue

j. Using the standard Kaplan-Meier tail probability
estimates, it could be the case that this allocation is
suboptimal (there is no way to know if it would have
been better to include unit ct

j +1 from venue j in place
of a unit from another venue since we do not have an
accurate estimate of the tail probability for this unit),
and yet no exploration is taking place. By optimisti-
cally modifying the tail probability T̂ t

i (ct
i + 1) for each

venue, we ensure that no venue remains unexplored
simply because the algorithm unluckily observes a low
demand a small number of times.

We now formalize the idea of ct
i as a “cut-off point”

up to which the Kaplan-Meier estimates are accurate.
In the results that follow, we think of ε > 0 and δ > 0
as fixed parameters of the algorithm.2

Lemma 2 With probability at least 1 − δ, for all s ≤
ct
i, |Ti(s)− T̂ t

i (s)| ≤ ε/(8V ).
2In particular, ε corresponds to the value ε specified in

Theorem 3, and δ corresponds roughly to that δ divided
by the polynomial upper bound on time steps.

Algorithm 3: Subroutine OptimisticKM for comput-
ing modified Kaplan-Meier estimators. For all s, let
Dt

i,s and N t
i,s be defined as above, and assume that

ε > 0 and δ > 0 are fixed parameters.
Input: Observed data ({(vτ

i , rτ
i )}tτ=1) for venue i

Output: Modified Kaplan-Meier estimators for i

% Calculate the cut-off:
ct
i ← max{s :s=0 or N t

i,s−1≥128(sV/ε)2 ln(2V/δ)};
% Compute Kaplan-Meier tail probabilities:
T̂ t

i (0) = 1;
for s = 1 to V do

T̂ t
i (s)←∏s−1

s′=0

(
1− (

Dt
i,s′/N t

i,s′
))

;
end

% Make the optimistic modification:
if ct

i < V then
T̂ t

i (ct
i + 1)← T̂ t

i (ct
i);

return T̂ t
i ;

Proof: It is always the case that Ti(0) = T̂ t
i (0) = 1,

so the result holds trivially unless ct
i > 0. Suppose

this is the case. Notice that N t
i,s is monotonic in s,

with N t
i,s ≥ N t

i,s′ whenever s ≤ s′. Thus by definition
of ct

i, for all s < ct
i, N t

i,s ≥ 128(sV/ε)2 ln(2V/δ). The
lemma then follows immediately from an application
of Theorem 2.

Lemma 3 shows that it is also possible to achieve ad-
ditive bounds on the error of tail probability estimates
for quantities s much bigger than ct

i as long as the tail
probability at ct

i is sufficiently small.

Lemma 3 If T̂ t
i (ct

i) ≤ ε/(4V ) and the high probability
event in Lemma 2 holds, then for all s such that ct

i <

s ≤ V , |Ti(s)− T̂ t
i (s)| ≤ ε/(2V ).

Proof: For any s > ct
i, it must be the case that

T̂ t
i (s) ≤ T̂ t

i (ct
i) ≤ ε/(4V ). If the high probabil-

ity event in Lemma 2 holds, then Ti(s) ≤ Ti(ct
i) ≤

T̂ t
i (ct

i) + ε/(8V ) ≤ ε/(2V ). Since both Ti(s) and T̂ t
i (s)

are constrained to lie between 0 and ε/(2V ), it must
be the case that |Ti(s)− T̂ t

i (s)| ≤ ε/(2V ).

4.3 Exploitation and Exploration Lemmas

With these two lemmas in place, we are ready to state
our main Exploitation Lemma (Step 2), which for-
malizes the idea that once a sufficient amount of ex-
ploration has occurred, the allocation output by the
greedy algorithm will be ε-optimal. The proof of this
lemma is where the requirement that T̂ t

i (ct
i +1) be set

optimistically becomes important. In particular, be-
cause of the optimistic setting of T̂ t

i (ct
i + 1), we know

that if the greedy policy allocates exactly ct
i units to a



venue i, it could not gain too much by reallocating ad-
ditional units from another venue to venue i instead.
In this sense, we create a “buffer” above each cut-off,
guaranteeing that it is not necessary to continue ex-
ploring as long as one of the two conditions in the
lemma statement is met for each venue.

Lemma 4 (Exploitation Lemma) Assume that at
time t, the high probability event in Lemma 2 holds. If
for each venue i, either (1) vt

i ≤ ct
i, or (2) T̂ t

i (ct
i) ≤

ε/(4V ), the difference between the expected number of
units consumed under allocation �vt and the expected
number of units consumed under the optimal allocation
is at most ε.

Proof: Let a1, · · · , aK be any optimal allocation of
the V t units. Since both �a and �vt are over V t units, it
must be the case that

∑
i:ai>vt

i
ai− vt

i =
∑

i:vt
i >ai

vt
i −

ai. We can thus define an arbitrary one-to-one map-
ping between the units that were allocated to different
venues by the algorithm and the optimal allocation.
Consider any such pair in this mapping. Let i be the
venue to which the unit was allocated by the algo-
rithm, and let n be the index of the unit in that venue.
Similarly let j be the venue to which the unit was al-
located by the optimal allocation, and let m be the
index of the unit in that venue.

If Condition (1) in the lemma statement holds for
venue i, then by Lemma 2, since n ≤ vt

i ≤ ct
i,

T̂ t
i (n) ≤ Ti(n) + ε/(8V ) ≤ Ti(n) + ε/(2V ). On the

other hand, if Condition (2) holds, then by Lemma 3,
it is still the case that T̂ t

i (n) ≤ Ti(n) + ε/(2V ).

Now, if vt
j < ct

j holds with strict inequality, then by
Lemma 2, Tj(vt

j + 1) ≤ T̂ t
j (vt

j + 1) + ε/(2V ). If vt
j =

ct
j , then Tj(vt

j + 1) ≤ Tj(ct
j) ≤ T̂ t

j (ct
j) + ε/(2V ) =

T̂ t
j (vt

j + 1) + ε/(2V ), where the last equality is due to
the optimistic setting of T̂ t

j (ct
j + 1) in the exploration

algorithm. Finally, if vt
j > ct

j , then it must be the
case that Condition (2) in the lemma statement holds
for venue j and by Lemma 3 it is still the case that
Tj(vt

j + 1) ≤ T̂ t
j (vt

j + 1) + ε/(2V ).

Thus in all three cases, since m > vt
j , we have that

Tj(m) ≤ Tj(vt
j + 1) ≤ T̂ t

j (vt
j + 1) + ε/(2V ). Since

the greedy algorithm chose to send unit n to venue
i instead of sending an additional unit to venue j, it
must be the case that T̂ t

i (n) ≥ T̂ t
j (vt

j + 1) and thus
Ti(n) ≥ Tj(m)− ε/V .

Since there are at most V pairs in the matching, and
each contributes at most ε/V to the difference in ex-
pected units consumed between the optimal allocation
and the algorithm’s, the difference is at most ε.

Note that this bound is tight in the sense that it is
possible to construct examples where the difference in
expected units consumed is as large as ε.

Finally, Lemma 5 presents the main exploration lemma
(Step 3), which states that on any time step at which
the allocation is not ε-optimal, the probability of a
“useful” observation is lower bounded by ε/(8V ).

Lemma 5 (Exploration Lemma) Assume that at
time t, the high probability event in Lemma 2 holds.
If the allocation is not ε-optimal, then for some venue
i, with probability at least ε/(8V ), N t+1

i,ct
i

= N t
i,ct

i
+ 1.

Proof: Suppose the allocation is not ε-optimal at time
t. By Lemma 4, it must be the case that there exists
some venue i for which vt

i > ct
i and T̂ t

i (ct
i) > ε/(4V ).

Let � be a venue for which this is true. Since vt
� > ct

�,
it will be the case that N t+1

�,ct
�

= N t
�,ct

�
+ 1 as long as

rt
� ≥ ct

�. Since T̂ t
� (ct

�) > ε/(4V ), Lemma 2 implies that
T�(ct

�) ≥ ε/(8V ), so rt
� ≥ ct

� with probability at least
ε/(8V ).

4.4 Putting It All Together

With the exploitation and exploration lemmas in
place, we are finally ready to state our main theorem.
The full proof is omitted due to lack of space, but we
sketch the main ideas below.

Theorem 3 (Main Theorem) For any ε > 0 and
δ > 0, with probability 1 − δ (over the randomness
of draws from Q and {Pi}), after running for a time
polynomial in K, V , 1/ε, and ln(1/δ), Algorithm 2
makes an ε-optimal allocation on each subsequent time
step with probability at least 1− ε.

Proof Sketch: Suppose that the algorithm runs for
R time steps, where R is a polynomial in K, V , 1/ε,
and ln(1/δ) (to be determined later). If it is the case
that the algorithm was already ε-optimal on a fraction
(1 − ε) of the R time steps, then we can argue that
the algorithm will continue to be ε-optimal on at least
a fraction (1 − ε) of future time steps; this is because
the algorithm gets better on average over time as more
observations are made.

On the other hand, if the algorithm chose sub-optimal
allocations on at least a fraction ε of the R time steps,
then by Lemma 5, the algorithm must have incre-
mented N t

i,ct
i

for some venue i and current cut-off ct
i

approximately ε2R/(8V ) times. By definition of the ct
i,

it can never be the case that N t
i,ct

i
was incremented too

many times for any fixed values of i and ct
i (where “too

many” is a polynomial in V , 1/ε, and ln(1/δ)); other-
wise the cut-off would have increased. Since there are



only K venues and V possible cut-off values to con-
sider in each venue, the total number of increments
can be no more than KV times this polynomial, an-
other polynomial in V , 1/ε, ln(1/δ), and now K. If R
is sufficiently large (but still polynomial in all of the
desired quantities) and approximately ε2R/(8V ) incre-
ments were made, we can argue that every venue must
have been fully explored, in which case, again, future
allocations will be ε-optimal.

We conclude our theory contributions with a few
brief remarks. Our optimistic tail modifications of
the Kaplan-Meier estimators are relatively mild 3.
In many circumstances we actually expect that the
estimate-allocate loop with unmodified Kaplan-Meier
would work well, and we investigate a parametric ver-
sion of this learning algorithm in the experiments de-
scribed below.

It also seems quite likely that variants of our algorithm
and analysis could be developed for alternative objec-
tive functions, such as minimizing the number of steps
of repeated reallocation required to execute all shares
(for which it is possible to create examples where my-
opic greedy allocation at each step is suboptimal), or
maximizing the probability of executing all V shares
on a single step.

5 Application: Dark Pool Problem

We now describe the application that provided the
original inspiration to develop our framework and al-
gorithm. As mentioned in the Introduction, dark pools
are a particular and relatively recent type of exchange
for listed stocks. While the precise details are beyond
the scope of this paper, the main challenge in exe-
cuting large-volume trades in traditional (“light”) ex-
changes is that it is difficult to “conceal” such trades,
and their revelation generally results in adverse impact
on price (e.g. the presence of a large-volume buyer
causes the price to rise against that buyer). If the
volume is sufficiently large, this difficulty of conceal-
ment remains even if one attempts to break the trade
up slowly over time. Dark pools arose exactly to ad-
dress the problems faced by large traders, and tend
to emphasize trade and order concealment over price
optimization (Wikipedia, 2009, Bogoslaw, 2007).

In a typical dark pool, buyers and sellers submit or-
ders that simply specify the total volume of shares they
wish to buy or sell, with the price of the transaction de-
termined exogenously by “the market”. 4 Upon sub-

3The same results can be proved for more invasive mod-
ifications, such as pushing all mass above the cut-offs to
the maximum possible volume, which would result in even
more aggressive exploration.

4Typically the midpoint between the bid and ask in

mitting an order to (say) buy v shares, a trader is put
in a queue of buyers awaiting transaction, and there is
a similar queue of sell orders. Matching between buy-
ers and sellers occurs in sequential arrival of orders,
similar to a light exchange. Unlike a light exchange,
no information is provided to traders about how many
parties or shares might be available in the pool at any
given moment. Thus in a given time period, a submis-
sion of v shares results only in a (possibly censored)
report of how many shares up to v were executed.

While presenting their own trading challenges, dark
pools have become tremendously popular exchanges,
responsible for executing 10-20% of the overall US eq-
uity volume. In fact, they have been so successful that
there are now approximately 40+ dark pools for the
U.S. Equity market alone, leading traders and broker-
ages to face exactly the censored multi-venue explo-
ration problem we have been studying: How should
one optimally distribute a large trade over the many
independent dark pools? We now describe the appli-
cation of our algorithm to this problem, basing it on
actual data from four active dark pools.

5.1 Summary of Dark Pool Data

Our data set is from the internal dark pool order flow
for a major U.S. broker-dealer. Each (possibly cen-
sored) observation in this data is exactly of the form
discussed throughout the paper — a triple consisting
of the dark pool name, the number of shares sent to
that pool, and the number of shares subsequently ex-
ecuted within a short time interval. It is important
to highlight some limitations of the data. First, note
that the data set conflates the policy the brokerage
used for allocation across the dark pools with the liq-
uidity available in the pools themselves. For our data
set, the policy in force was very similar to the bandit-
style approach we discuss below. Second, the “parent”
orders determining the overall volumes to be allocated
across the pools were determined by the brokerage’s
trading needs, and are similarly out of our control.

The data set contains submissions and executions for
four active dark pools: BIDS Trading, Automated
Trading Desk, D.E. Shaw, and NYFIX, each for a
dozen of relatively actively-traded stocks 5, thus yield-
ing 48 distinct stock-pool data sets. The average daily
trading volume of these stocks across all exchanges
(light and dark) ranges from 1 to 60 million shares,
with a median volume of 15 million shares. Energy,
Financials, Consumer, Industrials, and Utilities indus-
tries are represented. Our data set spans 30 trading

the light exchanges. This is a slight oversimplification but
accurate for our purposes.

5Tickers represented are AIG, ALO, CMI, CVX, FRE,
HAL, JPM, MER, MIR, NOV, XOM, and NRG.



days; for every stock-pool pair we have on average
1,200 orders (from 600 to 2,000), which corresponds
to 1.3 million shares (from 0.5 million to 3 million).
Individual order sizes range from 100 to 50,000 shares,
with 1,000 shares being the median. 16% of orders are
filled at least partially (meaning that fully 84% result
in no shares executed), 9% of the total submitted vol-
ume was executed, and 11% of all observations were
censored.

5.2 Parametric Models for Dark Pools

While the theory and algorithm we have developed for
censored exploration permit a general (nonparametric)
form for the venue distributions Pi, in any application
it is reasonable to ask whether the data permits a sim-
ple parametric form for these distributions, with the
attendant computational and sample complexity bene-
fits. For our dark pool data the answer to this question
is affirmative.

We experimented with a variety of common paramet-
ric forms for the distributions. For each such form,
the basic methodology was the same. For each of the
4 × 12 = 48 venue-stock pairs, the data for that pair
was split evenly into a training set and a test set. The
training data was used to select the maximum like-
lihood model from the parametric class. Note that
we can no longer directly apply the nonparametric
Kaplan-Meier estimator — within each model class, we
must directly maximize the likelihood on the censored
training data. This is a relatively straightforward and
efficient computation for each of the model classes we
investigated. The test set was of course used to mea-
sure the generalization performance of each maximum
likelihood model.

Our investigation revealed that the best models main-
tained a separate parameter for the probability of 0
shares being available (that is, Pi(0) is explicitly esti-
mated) — a “Zero Bin” or ZB parameter. This is due
to the fact that the vast majority of submissions (84%)
to dark pools result in no shares being executed. We
then examined various parametric forms for the non-
zero portions of the venue distributions 6, including
uniform (which of course requires no additional param-
eters), and Poisson, exponential and power law forms
(each of which requires a single additional parameter).

The generalization results strongly favor the power law
form, in which the probability of s shares being avail-
able is proportional to 1/sβ for real β — a so-called
heavy-tailed distribution when β > 0. Nonparamet-
ric models trained with Kaplan-Meier are best on the
training data but overfit badly due to their complexity

6These forms were applied up to the largest volume sub-
mitted in the data sets, then normalized.

Model Train Loss Test Loss Wins
Nonparametric 0.454 0.872 3
ZB + Uniform 0.499 0.508 12

ZB + Power Law 0.467 0.484 28
ZB + Poisson 0.576 0.661 0

ZB + Exponential 0.883 0.953 5

Table 1: Average per-sample log-loss (negative log like-
lihood) for the different venue distribution models. The
“Wins” column counts the number of stock-venue pairs
where a given model beats the other four on the test data.

relative to the sparse data, while the other parametric
forms cannot accommodate the heavy tails of the data.
The comparative results are summarized in Table 1.
Based on this comparison, for our dark pool study we
investigate a variant of our main algorithm, in which
the estimate-allocate loop has an estimation step us-
ing maximum likelihood estimation within the ZB +
Power Law model, and allocations are done greedily
on these same models.

In terms of the estimated ZB + Power Law parameters
themselves, we note that for all 48 stock-pool pairs the
Zero Bin parameter accounted for most of the distri-
bution (between a fraction 0.67 and 0.96), which is not
surprising considering the aforementioned preponder-
ance of entirely unfilled orders in the data. The vast
majority of the 48 exponents β fell between β = 0.25
and β = 1.3 — so rather long tails indeed — but it
is noteworthy that for one of the four dark pools, 7
of the 12 estimated exponents were actually negative,
yielding a model that predicts higher probabilities for
larger volumes. This is likely an artifact of our size-
and time-limited data set, but is not entirely unreal-
istic and results in some interesting behavior in the
simulations below.

5.3 Data-Based Simulation Results

As in any control problem, the dark pool data in our
possession is unfortunately insufficient to evaluate and
compare different allocation algorithms. This is be-
cause of the aforementioned fact that the volumes sub-
mitted to each venue were fixed by the specific policy
that generated the data, and we cannot explore alter-
native choices — if our algorithm chooses to submit
1000 shares to some venue, but in the data only 500
shares were submitted, we simply cannot infer the out-
come of our desired submission.

We thus instead use the raw data to derive a simulator
with which we can evaluate different approaches. In
light of the modeling results of Section 5.2, the simu-
lator for stock S was constructed as follows. For each
dark pool i, we used all of the data for i and stock
S to estimate the maximum likelihood Zero Bin +



Power Law distribution. (Note that there is no need
for a training-test split here, as we have already sep-
arately validated the choice of distributional model.)
This results in a set of four venue distribution models
Pi that form the simulator for stock S. This simula-
tor accepts allocation vectors (v1, v2, v3, v4) indicating
how many shares some algorithm wishes to submit to
each venue, draws a “true liquidity” value si from Pi

for each i, and returns the vector (r1, r2, r3, r4), where
ri = min(vi, si) is the possibly censored number of
shares filled in venue i.

Across all 12 stocks, we compared the performance of
four different allocation algorithms:

• The ideal allocation, which is given the true param-
eters of the ZB + Power Law distributions used by
the simulator, and allocates shares optimally (greed-
ily) with respect to these distributions.

• The uniform allocation, which always divides any
order equally among all four venues.

• Our learning algorithm, which implements the re-
peated allocate-reestimate loop, using the maximum
likelihood ZB + Power Law model for the reestima-
tion step.

• A simple bandit-style algorithm, which begins with
equal weights assigned to all four venues. Allocation
to a venue which results in any nonzero number of
shares being executed causes that venue’s weight to
be multiplied by a factor α > 1 7. Allocations are
always proportional to the current weight vector.

Some remarks on these algorithms are in order. First,
note that the first two allocation methods (ideal and
uniform) are non-adaptive and are meant to serve as
baselines — one of them the best performance we could
hope for (ideal), and the other the most naive alloca-
tion possible (uniform). Second, note that our algo-
rithm has a distinct advantage in the sense that it
is using the correct parametric form, the same be-
ing used by the simulator itself. Thus our evalua-
tion of this algorithm is certainly optimistic compared
to what should be expected “in practice”. Finally,
note that the bandit algorithm is the crudest type
of weight-based allocation scheme of the type that
abounds in the no-regret literature (Cesa-Bianchi and
Lugosi, 2006); we are effectively forcing our problem
into a 0/1 loss setting corresponding to “no shares”
and “some shares” being executed. Certainly more so-
phisticated bandit-style approaches can and should be
examined.

Each algorithm was run in simulation for some number
of episodes . Each episode consisted of the allocation of

7For the experiments we optimized α over all stock-pool
pairs and thus used α = 1.05.
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Figure 1: Sample learning curves. For the stock AIG (left

panel), the bandits algorithm (labeled blue curve) beats

uniform allocation (dashed horizontal line) but appears to

asymptote short of ideal allocation (solid horizontal line).

For the stock NRG (right panel), the bandits algorithm

actually deteriorates with more episodes, underperforming

both uniform and ideal allocation. For both these stocks

(and for the other 10 in our data set), our algorithm (la-

beled red curve) performs nearly optimally.

a fixed number V of shares — thus the same number of
shares is repeatedly allocated by the algorithm, though
of course this allocation will change over time for the
two adaptive algorithms as they learn. Each episode
of simulation results in a some fraction of the V shares
being executed. Two values of V were investigated —
a smaller and therefore easier value V = 1000, and the
larger and therefore more difficult V = 8000.

We begin by showing full learning curves over 2000
episodes with V = 8000 for a couple of representa-
tive stocks in Figure 1. Here the average performance
of the two non-adaptive allocation schemes (Ideal and
Uniform) are represented as horizontal lines, while
learning curves are given for the adaptive schemes.
Due to high variance of the heavy-tailed venue dis-
tributions used by the simulator, a single trial of 2000
episodes is extremely noisy, so we both average over
400 trials for each algorithm, and smooth the result-
ing averaged learning curve with a standard exponen-
tial decay temporal moving average.

We see that our learning algorithm converges towards
the ideal allocation (as suggested by the theory), often
relatively quickly. Furthermore, in each case this ideal
asymptote is significantly better than the uniform al-
location strawman, meaning that optimal allocations
are highly non-uniform. Learning curves for the bandit
approach exhibit one of three general behaviors over
the set of 12 stocks. In some cases, the bandit ap-
proach is quite competitive with our algorithm, though
converging to ideal perhaps slightly slower (not shown
in Figure 1). In other cases, the bandit approach
learns to outperform uniform allocation but appears
to asymptote short of the ideal allocation. Finally, in
some cases the bandit approach appears to actually
“learn the wrong thing”, with performance decaying
significantly with more episodes. This happens when



one venue has a very heavy tail, but also a relatively
high probability of executing 0 shares, and occurs be-
cause the bandit approach does not have an explicit
representation of the tails of the distribution.

The left column of Figure 2 shows more systematic
head-to-head comparisons of our algorithm’s perfor-
mance versus the ideal, uniform and bandit allocations
after 2000 episodes for both small and large V . The
values plotted are averages of the last 50 points on
learning curves similar to Figure 1. These scatterplots
show that across all 12 stocks and both settings of
V , our algorithm competes well with the optimal allo-
cation, dramatically outperforms uniform, and signif-
icantly outperforms the bandit allocations (especially
at the larger volume V = 8000). The average com-
pletion rate across all stocks for the large (small) or-
der sequences is 10.0% (13.1%) for uniform and 13.6%
(19.4%) for optimal allocations. Our algorithm per-
forms almost as well as optimal — 13.5% (18.7%) —
and much better than bandits at 11.9% (17.2%).

The right column of Figure 2 is quite similar, except
now we measure performance not by the fraction of V
shares filled in one step, but the natural alternative
of order half-life — the number of steps of repeated
resubmission of any remaining shares to get the total
number executed above V/2. Despite the fact that our
algorithm is not designed to optimize this criterion and
that our theory does not directly apply to it, we see
the same broad story on this metric as well — our al-
gorithm competes with ideal, dominates uniform allo-
cation and beats the bandit approach on large orders.
The average order half-life for large (small) orders is
7.2 (5.3) for uniform allocation and 5.9 (4.4) for the
greedy algorithm on the true distributions. Our algo-
rithm requires on average 6.0 (4.9) steps, while bandits
uses 7.0 (4.4) to trade the large (small) orders.
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